3.747 \(\int \frac{1}{\sqrt{\cot (c+d x)} (a+i a \tan (c+d x))^3} \, dx\)

Optimal. Leaf size=267 \[ \frac{i \sqrt{\cot (c+d x)}}{4 d \left (a^3 \cot (c+d x)+i a^3\right )}+\frac{i \log \left (\cot (c+d x)-\sqrt{2} \sqrt{\cot (c+d x)}+1\right )}{16 \sqrt{2} a^3 d}-\frac{i \log \left (\cot (c+d x)+\sqrt{2} \sqrt{\cot (c+d x)}+1\right )}{16 \sqrt{2} a^3 d}-\frac{i \tan ^{-1}\left (1-\sqrt{2} \sqrt{\cot (c+d x)}\right )}{8 \sqrt{2} a^3 d}+\frac{i \tan ^{-1}\left (\sqrt{2} \sqrt{\cot (c+d x)}+1\right )}{8 \sqrt{2} a^3 d}+\frac{\cot ^{\frac{3}{2}}(c+d x)}{6 d (a \cot (c+d x)+i a)^3}+\frac{\sqrt{\cot (c+d x)}}{4 a d (a \cot (c+d x)+i a)^2} \]

[Out]

((-I/8)*ArcTan[1 - Sqrt[2]*Sqrt[Cot[c + d*x]]])/(Sqrt[2]*a^3*d) + ((I/8)*ArcTan[1 + Sqrt[2]*Sqrt[Cot[c + d*x]]
])/(Sqrt[2]*a^3*d) + Cot[c + d*x]^(3/2)/(6*d*(I*a + a*Cot[c + d*x])^3) + Sqrt[Cot[c + d*x]]/(4*a*d*(I*a + a*Co
t[c + d*x])^2) + ((I/4)*Sqrt[Cot[c + d*x]])/(d*(I*a^3 + a^3*Cot[c + d*x])) + ((I/16)*Log[1 - Sqrt[2]*Sqrt[Cot[
c + d*x]] + Cot[c + d*x]])/(Sqrt[2]*a^3*d) - ((I/16)*Log[1 + Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]])/(Sqrt
[2]*a^3*d)

________________________________________________________________________________________

Rubi [A]  time = 0.457498, antiderivative size = 267, normalized size of antiderivative = 1., number of steps used = 16, number of rules used = 13, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.5, Rules used = {3673, 3558, 3595, 3596, 12, 3476, 329, 297, 1162, 617, 204, 1165, 628} \[ \frac{i \sqrt{\cot (c+d x)}}{4 d \left (a^3 \cot (c+d x)+i a^3\right )}+\frac{i \log \left (\cot (c+d x)-\sqrt{2} \sqrt{\cot (c+d x)}+1\right )}{16 \sqrt{2} a^3 d}-\frac{i \log \left (\cot (c+d x)+\sqrt{2} \sqrt{\cot (c+d x)}+1\right )}{16 \sqrt{2} a^3 d}-\frac{i \tan ^{-1}\left (1-\sqrt{2} \sqrt{\cot (c+d x)}\right )}{8 \sqrt{2} a^3 d}+\frac{i \tan ^{-1}\left (\sqrt{2} \sqrt{\cot (c+d x)}+1\right )}{8 \sqrt{2} a^3 d}+\frac{\cot ^{\frac{3}{2}}(c+d x)}{6 d (a \cot (c+d x)+i a)^3}+\frac{\sqrt{\cot (c+d x)}}{4 a d (a \cot (c+d x)+i a)^2} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[Cot[c + d*x]]*(a + I*a*Tan[c + d*x])^3),x]

[Out]

((-I/8)*ArcTan[1 - Sqrt[2]*Sqrt[Cot[c + d*x]]])/(Sqrt[2]*a^3*d) + ((I/8)*ArcTan[1 + Sqrt[2]*Sqrt[Cot[c + d*x]]
])/(Sqrt[2]*a^3*d) + Cot[c + d*x]^(3/2)/(6*d*(I*a + a*Cot[c + d*x])^3) + Sqrt[Cot[c + d*x]]/(4*a*d*(I*a + a*Co
t[c + d*x])^2) + ((I/4)*Sqrt[Cot[c + d*x]])/(d*(I*a^3 + a^3*Cot[c + d*x])) + ((I/16)*Log[1 - Sqrt[2]*Sqrt[Cot[
c + d*x]] + Cot[c + d*x]])/(Sqrt[2]*a^3*d) - ((I/16)*Log[1 + Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]])/(Sqrt
[2]*a^3*d)

Rule 3673

Int[(cot[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]^(n_.))^(p_.), x_Symbol] :> Dist
[d^(n*p), Int[(d*Cot[e + f*x])^(m - n*p)*(b + a*Cot[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x
] &&  !IntegerQ[m] && IntegersQ[n, p]

Rule 3558

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Si
mp[((b*c - a*d)*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n - 1))/(2*a*f*m), x] + Dist[1/(2*a^2*m), Int[(a
+ b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 2)*Simp[c*(a*c*m + b*d*(n - 1)) - d*(b*c*m + a*d*(n - 1))
- d*(b*d*(m - n + 1) - a*c*(m + n - 1))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c -
a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, 0] && GtQ[n, 1] && (IntegerQ[m] || IntegersQ[2*m,
2*n])

Rule 3595

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[((A*b - a*B)*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n)/(2*a*f*
m), x] + Dist[1/(2*a^2*m), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 1)*Simp[A*(a*c*m + b*d*n
) - B*(b*c*m + a*d*n) - d*(b*B*(m - n) - a*A*(m + n))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A,
B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[m, 0] && GtQ[n, 0]

Rule 3596

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((a*A + b*B)*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n + 1))/(2
*f*m*(b*c - a*d)), x] + Dist[1/(2*a*m*(b*c - a*d)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Si
mp[A*(b*c*m - a*d*(2*m + n + 1)) + B*(a*c*m - b*d*(n + 1)) + d*(A*b - a*B)*(m + n + 1)*Tan[e + f*x], x], x], x
] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[m, 0] &&  !GtQ[n,
0]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3476

Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[b/d, Subst[Int[x^n/(b^2 + x^2), x], x, b*Tan[c + d
*x]], x] /; FreeQ[{b, c, d, n}, x] &&  !IntegerQ[n]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 297

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]},
Dist[1/(2*s), Int[(r + s*x^2)/(a + b*x^4), x], x] - Dist[1/(2*s), Int[(r - s*x^2)/(a + b*x^4), x], x]] /; Free
Q[{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ,
 b]]))

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{\cot (c+d x)} (a+i a \tan (c+d x))^3} \, dx &=\int \frac{\cot ^{\frac{5}{2}}(c+d x)}{(i a+a \cot (c+d x))^3} \, dx\\ &=\frac{\cot ^{\frac{3}{2}}(c+d x)}{6 d (i a+a \cot (c+d x))^3}+\frac{\int \frac{\sqrt{\cot (c+d x)} \left (-\frac{3 i a}{2}+\frac{9}{2} a \cot (c+d x)\right )}{(i a+a \cot (c+d x))^2} \, dx}{6 a^2}\\ &=\frac{\cot ^{\frac{3}{2}}(c+d x)}{6 d (i a+a \cot (c+d x))^3}+\frac{\sqrt{\cot (c+d x)}}{4 a d (i a+a \cot (c+d x))^2}+\frac{\int \frac{-3 i a^2+9 a^2 \cot (c+d x)}{\sqrt{\cot (c+d x)} (i a+a \cot (c+d x))} \, dx}{24 a^4}\\ &=\frac{\cot ^{\frac{3}{2}}(c+d x)}{6 d (i a+a \cot (c+d x))^3}+\frac{\sqrt{\cot (c+d x)}}{4 a d (i a+a \cot (c+d x))^2}+\frac{i \sqrt{\cot (c+d x)}}{4 d \left (i a^3+a^3 \cot (c+d x)\right )}+\frac{\int -6 i a^3 \sqrt{\cot (c+d x)} \, dx}{48 a^6}\\ &=\frac{\cot ^{\frac{3}{2}}(c+d x)}{6 d (i a+a \cot (c+d x))^3}+\frac{\sqrt{\cot (c+d x)}}{4 a d (i a+a \cot (c+d x))^2}+\frac{i \sqrt{\cot (c+d x)}}{4 d \left (i a^3+a^3 \cot (c+d x)\right )}-\frac{i \int \sqrt{\cot (c+d x)} \, dx}{8 a^3}\\ &=\frac{\cot ^{\frac{3}{2}}(c+d x)}{6 d (i a+a \cot (c+d x))^3}+\frac{\sqrt{\cot (c+d x)}}{4 a d (i a+a \cot (c+d x))^2}+\frac{i \sqrt{\cot (c+d x)}}{4 d \left (i a^3+a^3 \cot (c+d x)\right )}+\frac{i \operatorname{Subst}\left (\int \frac{\sqrt{x}}{1+x^2} \, dx,x,\cot (c+d x)\right )}{8 a^3 d}\\ &=\frac{\cot ^{\frac{3}{2}}(c+d x)}{6 d (i a+a \cot (c+d x))^3}+\frac{\sqrt{\cot (c+d x)}}{4 a d (i a+a \cot (c+d x))^2}+\frac{i \sqrt{\cot (c+d x)}}{4 d \left (i a^3+a^3 \cot (c+d x)\right )}+\frac{i \operatorname{Subst}\left (\int \frac{x^2}{1+x^4} \, dx,x,\sqrt{\cot (c+d x)}\right )}{4 a^3 d}\\ &=\frac{\cot ^{\frac{3}{2}}(c+d x)}{6 d (i a+a \cot (c+d x))^3}+\frac{\sqrt{\cot (c+d x)}}{4 a d (i a+a \cot (c+d x))^2}+\frac{i \sqrt{\cot (c+d x)}}{4 d \left (i a^3+a^3 \cot (c+d x)\right )}-\frac{i \operatorname{Subst}\left (\int \frac{1-x^2}{1+x^4} \, dx,x,\sqrt{\cot (c+d x)}\right )}{8 a^3 d}+\frac{i \operatorname{Subst}\left (\int \frac{1+x^2}{1+x^4} \, dx,x,\sqrt{\cot (c+d x)}\right )}{8 a^3 d}\\ &=\frac{\cot ^{\frac{3}{2}}(c+d x)}{6 d (i a+a \cot (c+d x))^3}+\frac{\sqrt{\cot (c+d x)}}{4 a d (i a+a \cot (c+d x))^2}+\frac{i \sqrt{\cot (c+d x)}}{4 d \left (i a^3+a^3 \cot (c+d x)\right )}+\frac{i \operatorname{Subst}\left (\int \frac{1}{1-\sqrt{2} x+x^2} \, dx,x,\sqrt{\cot (c+d x)}\right )}{16 a^3 d}+\frac{i \operatorname{Subst}\left (\int \frac{1}{1+\sqrt{2} x+x^2} \, dx,x,\sqrt{\cot (c+d x)}\right )}{16 a^3 d}+\frac{i \operatorname{Subst}\left (\int \frac{\sqrt{2}+2 x}{-1-\sqrt{2} x-x^2} \, dx,x,\sqrt{\cot (c+d x)}\right )}{16 \sqrt{2} a^3 d}+\frac{i \operatorname{Subst}\left (\int \frac{\sqrt{2}-2 x}{-1+\sqrt{2} x-x^2} \, dx,x,\sqrt{\cot (c+d x)}\right )}{16 \sqrt{2} a^3 d}\\ &=\frac{\cot ^{\frac{3}{2}}(c+d x)}{6 d (i a+a \cot (c+d x))^3}+\frac{\sqrt{\cot (c+d x)}}{4 a d (i a+a \cot (c+d x))^2}+\frac{i \sqrt{\cot (c+d x)}}{4 d \left (i a^3+a^3 \cot (c+d x)\right )}+\frac{i \log \left (1-\sqrt{2} \sqrt{\cot (c+d x)}+\cot (c+d x)\right )}{16 \sqrt{2} a^3 d}-\frac{i \log \left (1+\sqrt{2} \sqrt{\cot (c+d x)}+\cot (c+d x)\right )}{16 \sqrt{2} a^3 d}+\frac{i \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\sqrt{2} \sqrt{\cot (c+d x)}\right )}{8 \sqrt{2} a^3 d}-\frac{i \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\sqrt{2} \sqrt{\cot (c+d x)}\right )}{8 \sqrt{2} a^3 d}\\ &=-\frac{i \tan ^{-1}\left (1-\sqrt{2} \sqrt{\cot (c+d x)}\right )}{8 \sqrt{2} a^3 d}+\frac{i \tan ^{-1}\left (1+\sqrt{2} \sqrt{\cot (c+d x)}\right )}{8 \sqrt{2} a^3 d}+\frac{\cot ^{\frac{3}{2}}(c+d x)}{6 d (i a+a \cot (c+d x))^3}+\frac{\sqrt{\cot (c+d x)}}{4 a d (i a+a \cot (c+d x))^2}+\frac{i \sqrt{\cot (c+d x)}}{4 d \left (i a^3+a^3 \cot (c+d x)\right )}+\frac{i \log \left (1-\sqrt{2} \sqrt{\cot (c+d x)}+\cot (c+d x)\right )}{16 \sqrt{2} a^3 d}-\frac{i \log \left (1+\sqrt{2} \sqrt{\cot (c+d x)}+\cot (c+d x)\right )}{16 \sqrt{2} a^3 d}\\ \end{align*}

Mathematica [A]  time = 0.950365, size = 231, normalized size = 0.87 \[ \frac{\sqrt{\cot (c+d x)} \csc ^3(c+d x) \sec (c+d x) \left (6 i \sin (2 (c+d x))+3 i \sin (4 (c+d x))+\cos (4 (c+d x))+6 i \sqrt{\sin (2 (c+d x))} \sin ^{-1}(\cos (c+d x)-\sin (c+d x)) (\cos (3 (c+d x))+i \sin (3 (c+d x)))+6 \sqrt{\sin (2 (c+d x))} \sin (3 (c+d x)) \log \left (\sin (c+d x)+\sqrt{\sin (2 (c+d x))}+\cos (c+d x)\right )-6 i \sqrt{\sin (2 (c+d x))} \cos (3 (c+d x)) \log \left (\sin (c+d x)+\sqrt{\sin (2 (c+d x))}+\cos (c+d x)\right )-1\right )}{96 a^3 d (\cot (c+d x)+i)^3} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[Cot[c + d*x]]*(a + I*a*Tan[c + d*x])^3),x]

[Out]

(Sqrt[Cot[c + d*x]]*Csc[c + d*x]^3*Sec[c + d*x]*(-1 + Cos[4*(c + d*x)] - (6*I)*Cos[3*(c + d*x)]*Log[Cos[c + d*
x] + Sin[c + d*x] + Sqrt[Sin[2*(c + d*x)]]]*Sqrt[Sin[2*(c + d*x)]] + (6*I)*Sin[2*(c + d*x)] + (6*I)*ArcSin[Cos
[c + d*x] - Sin[c + d*x]]*Sqrt[Sin[2*(c + d*x)]]*(Cos[3*(c + d*x)] + I*Sin[3*(c + d*x)]) + 6*Log[Cos[c + d*x]
+ Sin[c + d*x] + Sqrt[Sin[2*(c + d*x)]]]*Sqrt[Sin[2*(c + d*x)]]*Sin[3*(c + d*x)] + (3*I)*Sin[4*(c + d*x)]))/(9
6*a^3*d*(I + Cot[c + d*x])^3)

________________________________________________________________________________________

Maple [C]  time = 0.376, size = 3151, normalized size = 11.8 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/cot(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^3,x)

[Out]

-1/48/a^3/d*2^(1/2)*(cos(d*x+c)-1)*(-30*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c
))^(1/2)*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*EllipticF((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)
,1/2*2^(1/2))*cos(d*x+c)^2+6*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*(-
(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*EllipticF((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2
))-12*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*((cos(d*x+c)-1)/sin(d*x+
c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*cos(d*x+c
)^3*sin(d*x+c)+15*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*(
(cos(d*x+c)-1)/sin(d*x+c))^(1/2)*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2
))*cos(d*x+c)^2-2*sin(d*x+c)*2^(1/2)*cos(d*x+c)^2+9*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)
-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(
d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*cos(d*x+c)*sin(d*x+c)+12*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c
))^(1/2),1/2-1/2*I,1/2*2^(1/2))*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)
*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*cos(d*x+c)^3*sin(d*x+c)+2*2^(1/2)*cos(d*x+c)^3*sin(d*x+c)+6*I*2
^(1/2)*cos(d*x+c)^3-6*I*2^(1/2)*cos(d*x+c)^4-3*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+si
n(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c
))^(1/2),1/2+1/2*I,1/2*2^(1/2))-3*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/
2)*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2-
1/2*I,1/2*2^(1/2))+15*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/
2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^
(1/2))*cos(d*x+c)^2+12*I*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*((cos
(d*x+c)-1)/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+
c))^(1/2)*cos(d*x+c)^4-12*I*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*((
cos(d*x+c)-1)/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d
*x+c))^(1/2)*cos(d*x+c)^4-15*I*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*
(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2
*I,1/2*2^(1/2))*cos(d*x+c)^2+15*I*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/
2))*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*(-(cos(d*x+c)-1-sin(d*x+c))
/sin(d*x+c))^(1/2)*cos(d*x+c)^2-9*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/
2))*cos(d*x+c)*sin(d*x+c)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*(-(co
s(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)-12*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I
,1/2*2^(1/2))*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*(-(cos(d*x+c)-1-s
in(d*x+c))/sin(d*x+c))^(1/2)*cos(d*x+c)^4-12*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*
I,1/2*2^(1/2))*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*(-(cos(d*x+c)-1-
sin(d*x+c))/sin(d*x+c))^(1/2)*cos(d*x+c)^4+24*EllipticF((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1
/2))*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*(-(cos(d*x+c)-1-sin(d*x+c)
)/sin(d*x+c))^(1/2)*cos(d*x+c)^4+3*I*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^
(1/2)*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1
/2+1/2*I,1/2*2^(1/2))-3*I*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*((co
s(d*x+c)-1)/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x
+c))^(1/2)-12*I*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*((cos(d*x+c)-1
)/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)
*cos(d*x+c)^3*sin(d*x+c)-12*I*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*
((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*(-(cos(d*x+c)-1-sin(d*x+c))/sin
(d*x+c))^(1/2)*cos(d*x+c)^3*sin(d*x+c)+24*I*EllipticF((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2
))*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*(-(cos(d*x+c)-1-sin(d*x+c))/
sin(d*x+c))^(1/2)*cos(d*x+c)^3*sin(d*x+c)+9*I*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2
*I,1/2*2^(1/2))*cos(d*x+c)*sin(d*x+c)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))
^(1/2)*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)+9*I*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1
/2),1/2-1/2*I,1/2*2^(1/2))*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*(-(c
os(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*cos(d*x+c)*sin(d*x+c)-18*I*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*((cos(d
*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*EllipticF((-(cos(d*x+c)-1-
sin(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))*cos(d*x+c)*sin(d*x+c))*(cos(d*x+c)+1)^2/(4*I*sin(d*x+c)*cos(d*x+c)^
2+4*cos(d*x+c)^3-I*sin(d*x+c)-3*cos(d*x+c))/(cos(d*x+c)/sin(d*x+c))^(1/2)/sin(d*x+c)^4

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: RuntimeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cot(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^3,x, algorithm="maxima")

[Out]

Exception raised: RuntimeError

________________________________________________________________________________________

Fricas [B]  time = 1.45591, size = 1450, normalized size = 5.43 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cot(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^3,x, algorithm="fricas")

[Out]

-1/48*(12*a^3*d*sqrt(1/64*I/(a^6*d^2))*e^(6*I*d*x + 6*I*c)*log(2*(8*(a^3*d*e^(2*I*d*x + 2*I*c) - a^3*d)*sqrt((
I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*sqrt(1/64*I/(a^6*d^2)) + I*e^(2*I*d*x + 2*I*c))*e^(-2*I*
d*x - 2*I*c)) - 12*a^3*d*sqrt(1/64*I/(a^6*d^2))*e^(6*I*d*x + 6*I*c)*log(-2*(8*(a^3*d*e^(2*I*d*x + 2*I*c) - a^3
*d)*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*sqrt(1/64*I/(a^6*d^2)) - I*e^(2*I*d*x + 2*I*c)
)*e^(-2*I*d*x - 2*I*c)) - 12*a^3*d*sqrt(-1/64*I/(a^6*d^2))*e^(6*I*d*x + 6*I*c)*log(1/8*(8*(a^3*d*e^(2*I*d*x +
2*I*c) - a^3*d)*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*sqrt(-1/64*I/(a^6*d^2)) + I)*e^(-2
*I*d*x - 2*I*c)/(a^3*d)) + 12*a^3*d*sqrt(-1/64*I/(a^6*d^2))*e^(6*I*d*x + 6*I*c)*log(-1/8*(8*(a^3*d*e^(2*I*d*x
+ 2*I*c) - a^3*d)*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*sqrt(-1/64*I/(a^6*d^2)) - I)*e^(
-2*I*d*x - 2*I*c)/(a^3*d)) - sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*(2*e^(6*I*d*x + 6*I*c
) + e^(4*I*d*x + 4*I*c) - 2*e^(2*I*d*x + 2*I*c) - 1))*e^(-6*I*d*x - 6*I*c)/(a^3*d)

________________________________________________________________________________________

Sympy [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: AttributeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cot(d*x+c)**(1/2)/(a+I*a*tan(d*x+c))**3,x)

[Out]

Exception raised: AttributeError

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{3} \sqrt{\cot \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cot(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^3,x, algorithm="giac")

[Out]

integrate(1/((I*a*tan(d*x + c) + a)^3*sqrt(cot(d*x + c))), x)